Microgrid System Integration

DOE Microgrid Workshop
30 August 2011

Juan Torres (Sandia National Laboratories)
Phillip Smith, P.E., CEM (Honeywell)
Session Outline

• First 20 minutes (or less): short introductory presentation by Phil and Juan
 – Introduction of technical issues
 – Case study (systems integration in practice)
 – Example discussion topics
• Next 90 minutes: group discussion
• Last 10 minutes: summary and wrap-up
Systems Integration

- Quick definition of systems integration (so we’re on the same page):
 - Includes subsystems assembly, implementation, and operations
 - For microgrids, subsystems include electrical, control, and security
- Example issues include protocol compatibility, communications, etc.
- Systems integration issues lead to significant project costs
- This session focuses on:
 - Controls
 - Security
 - Implementation
 - Operations
 - Others
Systems Integration – Controls

• Five modes of control for microgrids:
 – Protective relaying
 – Automated systems management
 – Human-in-the-loop management
 – Engineering configuration and management
 – Market interaction

• Many sorts of devices need to be integrated
 – Relays, PLCs, RTUs
 – Generator, boiler, motor controllers
 – Breakers and switches (LV and MV)
 – Demand response, etc.

• Communications include:
 – Networking devices
 – Network interfaces
 – Backbone connectivity
 – LANs, etc.
Systems Integration – Security

• Cyber security
 – Key/encryption/authentication compatibility
 – Logging/forensics/tamper adequacy
 – Acceptable impacts from security overhead

• Balance between:
 – Physical and cyber security
 – Technical, procedural, and administrative security controls

• Incompatibilities can cause vulnerabilities (e.g. lack of support for an important security service)

• Complexity and variability of technology tends toward configuration errors and vulnerabilities
Microgrid Partnerships

- Add challenges and opportunities to systems integration
Case Study:
FDA White Oak Campus
Case Study: FDA White Oak Campus
Case Study: Systems Integration Challenges

- Mission requirements
- Procurement sequence
 - Multiple designers
 - Development/communication of criteria
 - Consulting party concurrence
- Funding impacts
- Points of interface
 - Building automation systems (BAS)
 - Plant controls
 - Utility distribution system
 - Technology integration platform (TIP)
- Optimization elements
 - CUP equipment deployment in response to campus loads
 - Campus interaction with PJM grid / market
 - Load management in buildings to enhance demand response capability
- Operational constraints
 - Mission
 - Physical parameters
 - Environmental requirements / restrictions
 - Fiscal considerations
 - Export limitations
- Plant has been operational since 2004
 - CCHP design with absorption chillers
 - Had to integrate ABB controls into turbines
 - Hard to make sure that the right controller is in charge at the right time
- Practical challenges
 - Grid separation
 - Black start recovery
 - Building systems status / restart
 - Critical load management
 - Human interaction
 - Level of automation
Discussion, Part 1
(List of R&D Topic Areas)

• An R&D topic must lend itself to:
 – Understanding baseline (including costs for managing systems integration challenge)
 – Developing target for improvements
 – Describing impactful R&D activities to achieve the target

• Examples R&D topic areas from the lead-off presentation (these are just examples - we need your input!):
 – Demand response as applied in microgrid deployments for ancillary services
 – Technical interaction and integration of controls across various domains (diesel controllers, micro-EMS, building management, etc.)
 – Cyber security, to ensure standard elements of a security architecture and minimize technical incompatibilities and implementation complexity
 – Complex interaction among environmental issues (CCHP efficiency, fewer distributed diesels in favor of larger units, permitting)
Topic Area Example Analysis

- Costs for current applications (very situation dependent)
 - Demand response
 - Controls integration
 - Cyber security
 - Environmental analysis

- Performance targets:
 - Demand response for microgrid applications that optimizes balance between revenue impacts and mission accomplishment
 - Controls integration challenges reduced to X% of project budget
 - Necessary cyber security services defined across various microgrid application scenarios, with interoperable technical controls
 - Provide a single environmental analysis template that supports all permitting/value studies
Topic Area Example Analysis (Cont.)

• How to achieve the performance targets:
 – Education and training
 – Better understanding of component and subsystem reliability to improve performance analysis
 – DR: understand current systems capabilities, improvements necessary for various levels of revenue enhancement, risks associated with market participation
 – Integration costs are reduced through careful attention to standards development
 – Develop microgrid-specific cyber security elements referenced to ongoing activities, including ASAP-SG, NIST-IR, etc.
 – DOE, EPA, and state environmental commissions work collaboratively
Session Reporting

• Show table listing all R&D activities
• Determine the relative priority of all R&D activities
• Elect spokesperson(s)
Contact Information

Juan Torres
Manager, Energy Surety Engineering and Analysis
Sandia National Laboratories
PO Box 5800, Albuquerque, New Mexico 87185-1108
505-844-0809, jjtorre@sandia.gov

Phillip L. Smith, P.E., CEM
Director, Federal Project Development
Honeywell Building Solutions
500 Westpark Drive, Suite 210 Peachtree City, GA 30269
770-632-0672, phil.smith2@honeywell.com