Report-out Presentation

Breakout Session # 5: Transient State Control and Protection

Led By: Yan Xu, Travis Smith, Oak Ridge National Laboratory

Total Participants ~ 10. Good mix of industry, academia and national labs.

Framing of the Topic

What is covered:

Before, during, and after a system reconfiguration or a large source/load change. For example:

- 1. Disconnection from main grid
- 2. Resynchronization with main grid
- 3. Fault protection (includes fault detection, internal and external, microgrid helping asset protection as well as feeding back requirements to inverter manufacturers)
- 4. Source/load/microgrid-network connect/disconnect/change planned
- 5. Source/load/microgrid-network connect/disconnect/change unplanned (includes large changes in renewable sources)

Handled Transient Control and Protection together.

What is not covered

- 1. Microgrid architecture
- 2. Microgrid communication architecture and protocol
- 3. Steady state controls
- 4. Chicago weather

Needs

What is needed and why

- 1. Autonomous smooth and reliable transition strategies
 - To ensure microgrid transition to the desired steady-state and maintain stability
 - Maintain voltage and frequency within acceptable limits (and trade-off between these and other such limits)
 - To provide uninterrupted power supply to sensitive loads and reduce SAIDI, MAIFI
 - Minimize load interruptions.
- 2. Policy-driven needs, for example:
 - To best utilize distributed energy resources in transient response
- 3. Microgrid protection to cover all conditions
 - To ensure safety of both equipment and personnel, under all microgrid operational conditions

Challenges

What are the challenges

- 1. Large change, low inertia, fast response
- 2. Multiple DGs, including inverter based ones
- 3. Variation of system configuration
- 4. Variation of fault current directions and magnitudes
- 5. Coordination of main grid, microgrid, DER and protection devices

Current Technology Status

State of the Practice

- 1. Microgrid technologies implemented in isolated cases
- Unidirectional overcurrent protection designed for on-grid operation

State of the Art

- Fundamental functions fulfilled with distributed architecture, and some coordination of components and microgrid level control
- 2. Microgrid system level control and protection functions being developed
- 3. Conventional distribution system protection schemes some are modified to work in islanding operation mode

1. Current Technology Status

Current Major R&D activities

- 1. DOE:
 - CERTS microgrid
 - SNL energy surety microgrid
 - ORNL microgrid on control, protection, and communication
 - Renewable and Distributed Systems Integration projects

2. DOD:

- GE microgrid demo at CA 29 Palms Marine Base
- Microgrid enabled distributed energy solutions (Lockheed Martin)
- 3. DOD and DOE co-funded:
 - Smart power infrastructure demonstration for energy reliability and security (SPIDERS)
- 4. Outside US, pilots in Japan, Europe and few remote communities

R&D Scope

Description of the R&D scope responding to the challenges and needs

1. Transient Control:

- Modification of V and/or f control of DERs (including loads) during transients to include damping, and trade-off of stability limits
- Improve dynamics of existing control and protection by using additional local and system- wide control and communication
- Dynamic load control (including demand response uncertainties) beyond current UVLS and UFLS schemes and optimization/adaptive controls around it

2. Protection:

- Develop new protection schemes/modification of existing schemes especially to handle system with high penetration of inverter-based assets (low fault capacity)
- Develop ride-through capabilities and coordinate ride-through of all components in microgrid during events to achieve overall system level ride-through.
- Adaptive protection with communication
- 3. Define impact of types of communication to support measurement, transient control and protection. Identify requirements like Interoperability, Latency, Bandwidth, Redundancy, Cybersecurity and Survivability/reliability
- 4. Develop 3ph unbalanced dynamic stability analysis models for microgrids. Use it to develop a Reference Study for Transient Stability Analysis of Microgrids.
- 5. Validation of Standard Microgrid Component Models for Protection and Transient Studies

R&D Metrics - Milestones

- Define impact of types of communication and Identify requirements:
 - 1 year Study
- Dynamic stability analysis models and Reference Study:
 - 2-3 years Development. Validation could be planned with the items below.
- Transient Control:
 - Lab Demo 2 years, Field demo 3 years
- Protection:
 - Lab Demo 2 years, Field demo 3 years
- Demos should cover validation of Standard Microgrid Component Models for Protection and Transient Studies
- Integrated Demo of Transient Control and Protection Concepts in 5-7 years

R&D Metrics - Outcomes

1. Short term (3-5 years)

- Technically mature, commercially available autonomous transition control and protection concept and products with the following capabilities
 - Establishment of system restoration criteria with defined voltage and frequency variation and duration
 - Uninterrupted power supply for critical loads
 - Improvement in reliability indices
 - Protection for internal and external faults and under all microgrid operation conditions

2. Long term (>5 years)

- Drive down the cost of microgrid installation to clear \$/watt target (excluding generation, energy storage, and their interfaces)
- Compatible, scalable, modular, and plug-and-play products to make microgrid technology economically competitive for high penetration deployment
- Commercial products that can effectively integrate and utilize large scale and amount of DER, energy storage, electric vehicles, responsive loads in distribution systems